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Context: Many biological pathways involved in regulatindstrate metabolism display
rhythmic oscillation patterns over a 24-hour perida rodents, clock genes regulate circadian
rhythms of metabolic genes and substrate metabolidawever, the inter-relationships among
substrate metabolism, metabolic genes, and clocggyeave not been fully explored in people.
Objective: We tested the hypothesis that diurnal expressatieim of pyruvate dehydrogenase
kinase 4 PDK4), a key metabolic enzyme involved in fuel switahimetween glucose and free
fatty acids (FFA), is associated with plasma FFAcamtration and clock genes.

Design and Methods. We analyzed peripheral blood mononuclear celldBB subcutaneous
adipose tissue, and plasma samples obtained genadt 24 h from metabolically-healthy
women (n=10, BMI=28.0 = 1.1) and evaluated therinédationships amongDK4, plasma

FFA, and clock genes. We also determined the patenechanisms responsible febDK4
transcriptional regulation by using primary hum@&iMC and adipocytes.

Results: We foundPDK4 diurnal expression patterns were similar in PBM@ adipose tissue
(p=0.84, P<0.001). The diurnal variation in PBNPDK4 expression correlated more strongly
with plasma FFA£=0.86, P<0.001) and insulip£0.63, P<0.001) concentrations than clock
genes. Data obtained from primary human PBMC abayte culture experiments
demonstrated that FFA directly indudeDK4 gene expression (P<0.001), at least in part,
through activation of peroxisome proliferator-aated receptor alpha (PPAR-

Conclusions: Our results suggest that plasma FFA availabiditgn important regulator of
diurnal expression patternsBDK4, and identify a novel interaction between plasriza &nd
cellular diurnal rhythms in regulating substratetabelism.
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This study demonstrates a novel interaction between plasma FFA availability and circadian rhythms in
cellular gene expression of factors that regulate substrate selection in people.

INTRODUCTION

Daily energy homeostasis is maintained by altenatia the use of exogenous and endogenous
fuels in response to nutrient availability and horal control during the feeding-fasting cycle
(1,2). In the postprandial state, insulin stimegaglucose uptake and oxidization and enhances
lipogenesis and triglyceride storage in adiposus In the postabsorptive state, lipolysis of
adipose tissue triglycerides releases free faitysgé&FA) into the circulation, which are then
preferentially used for mitochondrigdoxidation and ATP production. Accordingly, theyke
biological pathways involved in regulating substratetabolism display rhythmic oscillation
patterns over a 24-hour period (1,3-5).
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Pyruvate dehydrogenase kinase 4 (PDK4) is a keychmitndrial enzyme that is involved in
regulating the shift in substrate oxidation betwearbohydrate and fat as needed in response to
the metabolic environment (6). PDK4 inactivates plyruvate dehydrogenase complex and
inhibits the entry of pyruvate into the TCA cydkereby preventing the oxidation of glucose
and promoting the oxidation of FFA. DysregulataPDK4 expression is associated with
alterations in substrate metabolism that occueiopte with obesity, insulin resistance, and type
2 diabetes (7,8). Data from studies conducteddemts have shown that clock genes (2,9,10),
master regulators of circadian rhythm, are direictiplved in controlling circadian variations in
Pdk4 gene expression and whole-body and cellular satiestnetabolism (11-13). Although data
from several studies have found that clock genedlat® in human tissues and cells (4,14-17),
the diurnal regulation d?DK4 and its relation with substrate metabolism andlcigenes in
people are not known.

The purpose of this study was to investigate thehaeisms responsible for the diurnal
expression pattern #fDK4 in metabolically-healthy people throughout themak 24-h fed and
fasted conditions. We hypothesized that diurnaktian in PDK4 expression is associated with
diurnal variations in plasma FFA concentrations elodk genes. Peripheral blood mononuclear
cells (PBMC), adipose tissue, and plasma samples algained serially for 24h to determine
the inter-relationships among diurnal variationgxpression oPDK4 and clock genes and
plasma FFA and insulin concentrations. In addjtiwe determined the potential mechanisms
responsible foPDK4 transcriptional regulation by conducting studegiimary PBMC and
human subcutaneous preadipocytes.
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MATERIAL AND METHODS

Study subjects

Ten women who were overweight participated in sigly (Table 1). All subjects had normal
oral glucose tolerance ardl metabolic syndrome criteria. Adipose tissue lalodd samples
analyzed for this study were obtained while sulsjgetrticipated in a study that involved
evaluating diurnal variations in insulin sensity#). Written informed consent was obtained
from all subjects before their participation instlstudy, which was approved by the Institutional
Review Board of Washington University School of M.

PBM C isolation and adipose tissue biopsies

Subjects were admitted to the Clinical Research (@RU) in the evening the day before the
study, consumed a standard dinner at 1800 h, ateldfaintil the next morning. At 2100 h, a
Teflon catheter was inserted into a radial artenyofood sampling. Subjects were instructed to
sleep at 2200 h and were awakened between 0530 0680 h the next morning. During the
day of the study, subjects ingested three idenligpaid meals, which were consumed within 20
min at 0700 h (breakfast), 1230 h (lunch), and 19Q@inner). Each meal was comprised of
55% of total energy as carbohydrates, 15% as prated 30% as fat, and contained one-third of
each subject’s estimated total daily energy requar, calculated as 1.2 x measured resting
energy expenditure, determined by using a metabudiasurement cart (TrueOne 2400;
ParvoMedics, Sady, UT). All meals were preparethénmetabolic kitchen of the CRU. To
minimize the impact of physical activity, subjeatere asked to rest in bed during the study.
Blood samples were obtained through the radiahyadatheter every 3 hours from 0600h to
0300h and at 0500h (0600 h, 0900 h, 1200 h, 15@800 h, 2100 h, 2400 h, 0300 h, 0500 h)
and PBMC were isolated through a density gradientrdugation by using the Histopaque-1077
(#10771; Sigma, St. Louis, MO). Abdominal subcetaus adipose tissue samples were
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obtained every 6 hours (0600 h, 1200 h, 1800 hQ 240 Each abdominal subcutaneous adipose
tissue sample was obtained from a different perilicalb quadrant to avoid the potential
confounding effects of post-traumatic injury anflammation on our outcome measures. After
the biopsy site was cleaned and sterilized, the akd underlying tissues were anesthetized by
cutaneous and percutaneous injection of 1% lidecakbdominal subcutaneous adipose tissue
was aspirated through a 4-mm liposuction cannulgig™Medical Products, San Diego, CA)
connected to a 30cc syringe from the periumbilicab. Tissue samples were immediately
rinsed with ice-cold saline, and frozen in liquittegen until subsequent analyses.

Real-time PCR

Total RNA was isolated from PBMC, adipose tissungl eultured primary cells by using RNeasy
Mini kit (Qiagen, Valencia, CA) or Trizol reagennyitrogen, Carlsbad, CA). Real-time PCR
was performed on clock genda(OCK, brain and muscle Arnt-like protein-BYIAL1], Period

1 [PER1], Period 2 PER2], and Rev-ErbAREV-ERB«]), andPDK4. Gene expression was
determined by using an ABI 7500 real-time PCR sydevitrogen) with SYBR Green or
TagMan (Invitrogen) as we previously described&},1We purchased predesigned TagMan
probes from Invitrogen. Sequences of the primezpeovided in Supplemental Table 1. The
expression of each gene was normalized to the keapiang gene, glyceraldehyde-3-phosphate
dehydrogenasé3APDH). All PBMC PDK4 gene expression data are provided in Supplemental
Table 2.

Plasma FFA, insulin, cortisol, and glucose concentrations

Plasma FFA was measured as previously describgd Pl8sma insulin and cortisol
concentrations were measured by using electrochemmkscence technology (Elecsys 2010,
Roche Diagnostics) (4,18). Plasma glucose coratortrwas determined by using an automated
glucose analyzer (Yellow Spring Instruments Co,l&eISprings, OH).
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Primary culture of PBMC and human subcutaneous preadipocytes

PBMC were isolated from blood samples obtained fh@althy non-obese people (BMI 22.7
1.6 kg/nf), after subjects fasted overnight. Isolated PBMie immediately cultured in RPMI-
1640 medium containing glucose (5 mmol/L), glutaenf® mmol/L), and 0.5 % fatty acid-free,
low endotoxin £ 0.1 ng/mg), BSA (#A8806; Sigma) (basal mediumjteAa 3-hour incubation
with the basal medium, cells were treated with basadium containing physiological
concentrations (50 or 250nol/L) of fatty acids (palmitate [#P9767; Sigmaleate [#0O7501,;
Sigma]: linoleate [#L8134, Sigma], 2:2:1 ratio) yglological (0.1 or 1 nmol/L) or supra-
physiological (10 nmol/L) concentrations of insulenperoxisome proliferator-activated receptor
alpha (PPARw) antagonist GW6471 (L4@mol/L) (#4618; Tocris Bioscience, Ellisville, MOQYr
combination of them for 3 hours. All culture mediare sterilized by using membrane filtration
before usage.

Primary human subcutaneous preadipocytes were gggdifrom Lonza (#PT-5020;
Walkersville, MD). Human preadipocytes were expogedifferentiation medium containing
FBS and other growth factors, such as insulin andhethasone (#PT-8002; Lonza), and
differentiated to mature adipocytes according ®orttanufacture’s instruction. Differentiated
cells were incubated in DMEM medium (#D6046; Sigmantaining 1% FBS and 0.5% fatty
acid-free, low endotoxin, BSA for 24 hours befdneyt were treated with FFA (250nol/L),
insulin (10 nmol/L), or both for 3 hours.

Statistical Analyses
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Shapiro-Wilk was used to verify normality of thetala One-way repeated measures analysis of
variance (ANOVA) was used to evaluate diurnal veores (time effects). A cosinor analysis
was performed by using the CircWave v1.4 softwarassess the diurnal rhythmsRiPK4 and
clock genes expression. Spearman’s correlatiofficieat (p) was calculated to examine
correlations between outcomes of interest. Corapas among three or more groups were
performed by using one-way ANOVA followed by thekBy's post-hoc test. Data are presented
as mean + SEMP values of less than 0.05 were considered statitisignificant.

RESULTS

Diurnal expression pattern of PDK4in PBM C isstrongly correlated with plasma FFA and insulin
concentrations in metabolically-healthy people

The expression of clock gend2HR1, PER2, andREV-ERBa) andPDK4 showed distinct diurnal
variations in PBMC obtained from metabolically-Hbglwomen (Figure 1) (P<0.05, one-way
repeated measures ANOVA). PBMRER2 andPDK4 had robust diurnal rhythms (P<0.001,
cosinor analysis). We found that PBNRDK4 expression was moderately but significantly
correlated witlPER2 (p=0.27, P=0.009) anBEV-ERBo (p=0.28, P=0.008[Supplemental

Figure 1). Plasma concentrations of FFA and inssiiowed reciprocal diurnal changes during
the 24-h feeding-fasting cycle (Figures 2A and B)urnal variations in PBM®DK4

expression and plasma FFA concentration were naatytical (Figure 2C) and strongly
correlated with each othgs<0.86, P<0.001) (Figure 2D). Moreover, there washaist
correlation between PBMEDK4 expression and plasma FFA concentrations in eadfcipant
(Supplemental Tables 2 and 3). We found a sigamticbut weaker, correlation between PBMC
PDK4 expression and the inverse values of plasma gtucoiscentrationg€0.47, P<0.001)
(Supplemental Figure 2). PBMEDK4 expression also correlated strongly with the isger
values of plasma insulin concentratiops@.63, P<0.001) (Figures 2E and 2F and Supplemental
Tables 3). Although we found a robust diurnal &oin in plasma cortisol concentrations
(P<0.001, one-way repeated measures ANOVA), PBNI)&4 expression did not correlate with
plasma cortisol concentrations=0.08, P=0.43) (Supplemental Figure 3).
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FFA induces PBM C PDK 4 gene expression by activating PPARa.

To determine the mechanism responsible for therabdeelationships betwedétbK4 and
plasma FFA and insulin concentrations, we isol@B¥C from metabolically-healthy people
and developed a primary human PBMC culture syskatnimcluded the physiological range of
FFA and insulin concentrations. We found that pblggiical concentrations of FFA (50-250
umol/L) markedly (~66 fold) increased PBMRDK4 gene expression in a dose-dependent
manner (Figure 3A). In contrast, insulin treatmeidtnot affect PBMDK4 gene expression
at physiological (0.1 or 1 nmol/L) and even suphggiological (10 nmol/L) concentrations
(Figure 3B). FFA-induced PBMEDK4 gene expression was inhibited by a PPARatagonist
GW6471, but not insulin (Figure 3C), suggesting #@A directly induces PBM®DK4 gene
expression, at least in part, through activatioRBAR .

Adiposetissue PDK 4 expression is associated with plasma FFA concentrations and PBMC PDK 4
expression.

The expression of clock genéaL(OCK, BMAL1, PER1, PER2, REV-ERB«) showed diurnal
variations (P<0.05, one-way repeated measures ANGMA rhythms (P<0.05, cosinor
analysis) in subcutaneous adipose tissue (Figur@Hg anti-phase expression patterns of
BMAL1 andPERL/PER2 were consistent with those observed in PBMC (Fdyrand the
expression patterns of clock genes were also simaltnose previously found in human adipose
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tissue (14,17). Adipose tisse®K4 expression also displayed a robust diurnal vamatio
(P<0.001, one-way repeated measures ANOVA) andhnmyP=0.003, cosinor analysis) (Figure
4). Adipose tissuPDK4 expression correlated wiPERL (p=0.58, P<0.001) andER2

(p=0.62, P<0.001) (Figure 5A and 5B). There wasangfer positive correlation between
adipose tissuPDK4 expression and plasma FFA concentratipr® 80, P<0.001) (Figure 5C)
and between adipose tissue and PBRIK4 expressiong=0.84, P<0.001) (Figure 5D and
Supplemental Table 3). In addition, we found a#icant, but weaker, correlation between
adipose tissuPDK4 expression and the inverse values of plasma msolcentrationspE0.47,
P=0.002) and plasma cortisol concentratigr(37, P=0.019) (Figures 5E and 5F). However,
adipose tissuPDK4 expression was not correlated with the inversaesbf plasma glucose
concentrationspE0.06, P=0.71) (Supplemental Figure 4). FinallJAR250umol/L) acutely
inducedPDK4 expression and insulin (10 nmol/L) partly inhibiteFA-induced, but not basal,
PDK4 expression in cultured human subcutaneous adiee¢iigure 5G). Taken together,
these results suggest that diurnal variation ip@sk tissu®DK4 expression is, at least in part,
regulated by plasma FFA availability.

DISCUSSION

The results from this study demonstrate #aK4, a key mitochondrial enzyme involved in fuel
switching between glucose and FFA, oscillates iMEBand adipose tissue in metabolically-
healthy people. Moreover, the diurnal expressiattepns oPDK4 were significantly correlated
with plasma FFA and insulin concentrations, andkligenes. Data obtained from primary cell
culture experiments demonstrated that FFA ind&i2€4 transcription, at least in part, through
PPARw signaling. Although several circulating hormoaes known to affed?PDK4

expression, such as growth hormone (20,21), thyrordhone (22), glucocorticoid (23,24),
adiponectin (25), and epinephrine (26), our ressutggest that plasma FFA availability is a key
regulator of diurnal variation d#DK4 during normal 24-h fed and fasted conditions. sehe
findings demonstrate a novel interaction betweasmph FFA concentrations and diurnal
variations in cellular gene expression of factbet regulate FFA metabolism in people, and
underscore the importance of plasma FFA availghiliregulating whole-body and cellular
substrate metabolism.

Our findings are consistent with data from previstiglies conducted in healthy people that
found PDK4 expressions induced during experimental conditions thatéase plasma FFA
concentrations, such as a lipid emulsion infus®f) ,(starvation (28,29), and high-fat diet
feeding (30,31). In addition, FFA-inducB®K4 expression is likely mediated by PPARR
PBMC, which is consistent with the results fromvyioes studies that fourldDK4 expression is
induced by the selective PPARigand WY-14643 in human PBMC (32). However, ontrast
to the profound inhibitory effect of insulin #DK4 expression in human skeletal muscle
(30,33), we found insulin had a minimal effectPIDK4 expression in cultured PBMC and
adipocytes. The mechanism responsible for thegarapt differences is not known, but could
involve cell type-specific differences RDK4 transcriptional regulation. Indeed, it was repadrt
that PPARi-independent activation ¢fDK4 transcription involves the estrogen-related remept
a (ERR-u)/peroxisome proliferator-activated receptor ganumactivator-1 (PGC1A) pathway in
myoblasts but not in hepatocytes (34). Therefopostprandial insulin secretion could inhibit
PDK4 expression in a tissue-specific manner, contnilgutd the diurnal alterations in whole-
body substrate metabolism during the normal fetethsycle. However, we cannot exclude the
possibility that our primary culture system does axxurately refleain vivo conditions and that
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the presence of insulin or FBS during the adipodyfferentiation process dilutes the effect of
insulin onPDK4 expression in mature adipocytes.

Emerging evidence from mouse models has suggdstedlock genes regulate FFA
metabolism by modulating transcription of key melabenzymes, including@dk4 (1,9-11). We
found expression of clock genes, sucl?BR1, PER2, andREV-ERBq, correlated witiPDK4
expression in PBMC and adipose tissue, althougtethelationships were weaker than those
between plasma FFA concentrations BiK4 expression. These findings indicate that
peripheral clock genes could be involved in regatadiurnal variations ifPDK4 and FFA
metabolism in people. In addition, we found adgtissudPDK4 expression correlated with
plasma cortisol concentrations, suggesting theraktitcadian clock could be also involved in
regulating the diurnal variation ®DK4 expression in some peripheral organs. A limitat
our study is that we did not use a constant roygho¢ocol, which would have allowed an
assessment of the endogenous component of circddiinms without environmental influences
(35), because we specifically chose to evaluata@lpodit outcomes in a real world setting. We
cannot exclude the possibility that timing of meatsl sampling in relationship to waking-time
varied among subjects, or that subjects experiesiesgp deprivation during the study, which
could have potentially affected clock genes expoessTherefore, it is possible that endogenous
expression rhythms of clock genes are more tightked to the metabolic regulators, including
PDK4 expression and FFA metabolism during constantifgeand lighting conditions.
Additional studies are needed to determine whettisalignment of fasting-feeding or sleep-
awake cycles with endogenous circadian rhythmstsf@iurnal variations dPDK4 expression
and its relationship with FFA metabolism.

In this study, we analyzed the expression of clgekes an®DK4 in circulating PBMC,
because frequent sampling is required to evalbatéull dynamics of diurnal variation in
cellular function, which is not possible with tigsbiopsies because of the burden on study
participants. Our results demonstrate that diuerplession patterns 8DK4 in PBMC are
significantly correlated with those in adiposeuiss In additionPDK4 gene expression patterns
observed in PBMC and adipose tissue found in teegut study are consistent with the
expression pattern observed in skeletal muscle lesntipat we reported previously (4). Taken
together, these results suggest that PBMC cange@n accessible surrogate for other tissues to
investigate the diurnal variations in cellular etgeimvolved in regulating substrate metabolism.

In summary, the results from the present study ssigifpat plasma FFA availability is an
important physiological regulator of diurnal exmies patterns oPDK4 in both PBMC and
adipose tissue. These findings demonstrate thertance of interaction among organ systems
in regulating metabolic function and energy homasistin people. Additional studies that
involve a systems biology approach are neededtarrdae whether the inter-relationships
among diurnal rhythms of clock genes, metabolicegeand circulating metabolites are altered
in people who have metabolic dysfunction, suchhase with insulin resistance and type 2
diabetes.
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Figure 1. Diurnal expression patternsof clock genesand PDK4 in PBMC. Gene expression
of selected clock gene€l(OCK, BMAL1, PER1, PER2, andREV-ERBa) andPDK4 normalized
to GAPDH expression in PBMC obtained from metabolicallyitreawomen (n=10). Subjects
consumed identical meals at 0700 h, 1230 h, an@ h9d *Values significantly different over
time assessed by using one-way repeated measu®¥ANP<0.05 andP<0.001. Data are
means + SEM.

Figure 2. Diurnal variation of PBM C PDK4 expression is associated with plasma FFA and
insulin concentrations. Plasma FFAA) and insulin B) concentrations over 24 hours in
metabolically-healthy women (n=10). Arrows inde&BMC collection. Comparison between
diurnal variations in PBM®DK4 gene expression (red line) and plasma FFA coratoris
(blue line) C) and inverse plasma insulin concentratidis(freen line). Relationship between
PBMC PDK4 gene expression and plasma FFA concentratiparfd inverse values of plasma
insulin concentrations). "Values significantly different over time assessgdising one-way
repeated measures ANOVA, P<0.001. Data are me&tsvk
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Figure 3. FFA induces PDK4 gene expression through activation of PPARa in primary

PBM C. PDK4 gene expression in PBMC isolated from metabolyeladlalthy people after they
fasted for ~12 h overnight. PBMC were cultured &redted with FFAA) or insulin 8) for 3
hours (n=8 per group).Cjj Effects of insulin (10 nmol/L) or a PPA&antagonist (1@mol/L
GW6471) on FFA-induced PBMBDK4 gene expression (n=7 per groupyalue significantly
different from corresponding value assessed bygusire-way ANOVA followed by the Tukey’s
post-hoc test, P<0.01. Data are means + SEM.

Figure 4. Diurnal expression patternsof clock genesand PDK4 in adiposetissue. Gene
expression of selected clock gen€sQCK, BMAL1, PER1, PER2, andREV-ERBa) andPDK4
normalized taGAPDH expression in subcutaneous adipose tissue obtaimmdmetabolically-
healthy women (n=10)"*Values significantly different over time assessgditing one-way
repeated measures ANOVR<0.05 andP<0.001. Data are means + SEM.

Figure 5. Adipose tissue PDK4 gene expression is associated with plasma FFA

concentrations and PBM C PDK4 gene expression. Relationship between adipose tisflizK4
gene expression and adipose tiSBERL (A) andPER2 (B) gene expression, plasma FF2) (
PBMC PDK4 gene expressioi], plasma insulini), and cortisol concentrationg)( (G)

PDK4 gene expression in differentiated human subcutaadipocytes treated with FFA (250
umol/L), insulin (10 nmol/L), or both for 3 hours<8 per group).”~ Values significantly
different from corresponding value assessed bygusire-way ANOVA followed by the Tukey’s
post-hoc test, P<0.05 and P<0.001. Data are means + SEM.

=
L
U
-
L
—l
S
—
oC
<
LL
O
Z
<
>
Qo
<

ENDOCRINE =
SOCETY Ema

10

ed from https://acadenic. oup. comlj cenl advance-articl e-abstract/doi/10.1210/j c.2017- 02230/ 4774928
sity of Florida user
uary 2018




THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

=
L
O
“

ADVANCE ARTICLE:

ENDOCRINE
SOCIETY

The Journal of Clinical Endocrinology & Metabolis@ppyright 2017

Table 1. Study subject characteristics (n=10)

Age (years) 42.3+5.9
Body mass index (kg/f 28.0+1.1
Fat-free mass (kg) 46.1 5.3
Total body fat (%) 40.5 + 4.6
Visceral adipose tissue volume @m 524 + 252
Intrahepatic triglyceride content (%) 159+1.5
Glucose (mg/dl) 90.3+5.0
Insulin (mU/l) 75+1.1
HOMA-IR 1.79+0.82
Triglyceride (mg/dl) 70 + 30
HDL-cholesterol (mg/dl) 64 + 22
LDL-cholesterol (mg/dl) 107 +44

Values are means + SD.

Abbreviations: HOMA-IR, homeostasis model assessment of insekistance; HDL, high-density lipoprotein;

LDL, low-density lipoprotein.

11

DOI: 10.1210/jc.2017-02230

ed from https://acadenic. oup. comlj cenl advance-articl e-abstract/doi/10.1210/j c.2017- 02230/ 4774928
sity of Florida user
uary 2018




Figure 1

PBMC

CLOCK s

BMAL1 s

PER1 s

PER2

THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

REV-ERVa 1

=
L
O
“

PDK4  os

2R

6 9 121518 21 24 3
Day time (

ADVANCE ARTICLE

ENDOCRINE =
SOCETY Ema

ed from https://acadenic. oup. comlj cenl advance-articl e-abstract/doi/10.1210/j c.2017- 02230/ 4774928
sity of Florida user
uary 2018




Figure 2

>
W

11 t 150 1 t
S Y Y Y Y Y vy vy 3 VIV Y Vv by
S 081 S 120 1
£ 2
§— 0.6 1 £ 90 1
< S
[T
L 04 - 2 60 1
g ©
& 021 § 30 ,
B 0 = 0 H‘
= T T T T T T T T 1 e —— T— ————
% 6 9 12 15 18 21 24 3 6 6 9 12 1 21 24 3 6
gg Day time (h) Day time (h)
5% C D
%g - 11 06 >
ST - Q ¢
28 & 051 05 3 & l
§e < £ 1
(=i o 0.4 £
< 06 1 = N
E S 03 L 3
o [T -
m 3 04 U.2 g g 0.5
U E 0.2 1 | @ m ° p=0.86
— o y o 0 N4 P<0.001
0 0 T T T T T 1
= 6 9 121518 2124 0 02 04 06 08 1 12
Day time (h} Plasma FFA (mmol/L)

1 - 025 T 1.5 1

x E o5 |-
Q 08 F02 2 % .
S = o 11
E 06 015 = S .

n .
nq_ 0 L 0.1 S nQ. .
[S) ®© [$) 0.5 1 *
= o2 005 5 = "\ AP T =
= o, . s g . p=0.63
c g o % o L]

0 <=

P S P<0.001
O AL il
0 01 02 03 04 05

1/Plasma insulin (pU/mL)

6 9 1215182124 3 6
Day time (h)

LL
-
S,
|_
is
<
L
O
Z
<
>
a
<

ENDOCRINE
SOCIETY

ed from https://acadenic. oup. comlj cenl advance-articl e-abstract/doi/10.1210/j c.2017- 02230/ 4774928
sity of Florida user
uary 2018




Figure 3
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Figure 4
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Figure 5
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